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Control Strategies for Functional 
Upper Limb Prostheses

Janne Hahne, Cosima Prahm, Ivan Vujaklija, 
and Dario Farina

Electrically powered hand protheses are typically 
controlled with electromyographic (EMG) sig-
nals, acquired from muscles of the residual limb. 
In this chapter we will give an overview on clas-
sical EMG control as well as recent develop-
ments based on machine learning. Classical 
approaches utilize two EMG electrodes and allow 
to control only a single prosthetic function at a 
time. Machine learning-based approaches utilize 
more electrodes and can be divided into classifi-
cation and regression. Classification-based 
approaches have become recently commercially 
available and allow a direct access to many pros-
thetic functions, while classification-based 
approaches allow for an independent simultane-
ous control of two degrees of freedom (DOF). 
Targeted muscle reinnervation is a surgical pro-

cedure to acquire additional control sites in the 
amputees and enables to directly control up to 
three DOF simultaneously.

�Introduction

Electrically powered hand protheses are assistive 
devices that can help to compensate for the 
impact an amputation has to a person’s life. First 
prototypes for electrically powered hand prosthe-
ses were developed after the 2nd World War in 
Germany [41] and the first device that became 
commercially available was released 1964 in the 
UDSSR [50]. From the very beginning, electro-
myographic (EMG) signals acquired form resid-
ual muscles have been the most important way to 
control the prostheses. Over many decades 
myoelectric-prostheses had only one actuated 
degree for freedom (DOF) for opening and clos-
ing the hand. Then a second DOF rotation of the 
wrist was introduced. In the last years, great 
advances were achieved in the development of 
highly functional electrically powered hand pros-
theses with a high number of actuated joints. 
Currently at least four manufacturers offer multi-
functional hand prostheses with 6 to 11 actuated 
joints. However, the bottleneck for introducing 
advanced functionality is not the protheses hard-
ware, but the techniques to read the intention 
from the user and control the prosthesis. In this 
chapter we will give an overview on the 
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commercially available control techniques as 
well as recent developments in research.

�EMG Signal Acquisition

�Physiological Background

Electromyographic signals are electric potentials 
in the range of 50 μV to 10 mV that are gener-
ated by skeletal muscles during their contraction 
[31]. Muscle fibers, which constitute the muscle, 
are innervated by terminal axonal branches of 
motor neurons. The motor neuron and its inner-
vated muscle fibers constitute a motor unit (MU) 
[18]. Each action potential of the motor axon 
triggers a motor unit action potential (MUAP) 
that propagates toward both ends of the fibers 
and causes their contraction. The MUAPs of all 
MUs superimpose and form the electromyogram 
that can be measured on the surface of the skin. 
Since an increase in muscle force is mediated by 
increases in both the number of active MUs and 
their firing rates, the amplitude of the stochastic 
interference EMG signal proportionally 
increases with force [30].

�Noninvasive EMG Acquisition

In clinical diagnostics and in electrophysiologi-
cal research, disposable pre-gelled electrodes are 
often used in combination with monopolar EMG 
signal derivation. On the other hand, for the con-
trol of active prostheses, bipolar derivation with 
active electrodes is the commonly applied con-
figuration. Here, the electric potential difference 
between two electrode contacts, typically located 
at a distance of 20  mm in the direction of the 
muscle fibers, is picked up and amplified by a 
biosignal amplifier [28]. Due to its high common 
mode rejection ratio and high input impedance, 
noise that is present on both bipolar electrode 
contacts are suppressed, as the EMG signal gets 
amplified [29]. In order to suppress motion arti-
facts and high-frequency contamination that 
tends to corrupt the EMG signals, commonly a 
band-pass filter with cut-off frequencies ranging 

from 5 to 30 Hz at the low end and 300–500 Hz 
at the top end is applied [31]. A notch filter is 
often used to eliminate the power line interfer-
ence at 50 Hz or 60 Hz depending on the region.

For practical reasons dry metal electrodes are 
typically used in prosthetics. Due to their rela-
tively large electrode-skin impedance, it is essen-
tial to keep the leads to the first amplification 
stage very short in order to prevent artifacts from 
saturating the signals. Therefore, active electrode 
modules are commonly applied, which integrate 
the electrodes with the amplifiers and the filters 
in a compact space. Many advanced control 
approaches use the raw EMG to extract multiple 
features per channel. However, electrode mod-
ules for conventional myoelectric control more 
often include a rectification and additional low-
pass filtering of the signal and thus provide access 
to the EMG envelope.

�Classical Control Approaches

�Two-Channel Approaches
The most common myoelectric hand prosthesis 
control methods are based on two bipolar EMG 
signals picked up from a pair of antagonistic 
muscles or muscle groups available at the stump 
(Fig.  13.1). In case of an amputation, in most 
cases a phantom representation of the lost limb 
remains, and the residual muscles contract dur-
ing phantom limb motions [47]. For individuals 
with transradial amputation, the wrist flexors 
and extensors are typically employed while the 
biceps and triceps brachii are commonly used in 
cases of transhumeral amputation. The pectora-
lis major or minor or infraspinatus or teres minor 
might be selected as source muscles for deriving 
control signals for amputations at the shoulder 
level. The electrode modules are integrated into 
the inner socket of the prosthesis and pressed 
against the skin with flexible polymer suspen-
sion that can partly compensate for stump vol-
ume variations [42].

Commonly, EMG activity of the flexor mus-
cles is mapped to a closing function of the pros-
thetic hand, while activity on the extensors 
related to its opening. Most devices provide a 
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proportional control, i.e., the stronger the mus-
cles contract, the faster the prosthesis moves, or a 
higher grip force is delivered. This control 
scheme, often referred to as direct control, was 
already applied in the first commercially avail-
able myoelectric prosthesis in the 1960s [50].

With the exception of targeted muscle reinner-
vation (TMR) patients, there are typically not 
enough separately addressable muscles to gener-
ate independent EMG signals, which could 
directly extend the prosthesis control to more 
degrees of freedom (DOFs) simply by increasing 
the number of channels. To control more than one 
DOF with only two EMG channels, several heu-
ristics have been developed and are in commer-
cial use. For a good overview on clinically 
available techniques, please refer to [34].

The most common approach for switching 
between the DOFs is the co-contraction-based 
triggering. Once the user contracts both muscle 
groups at the same time, the active DOF is 
switched, and the two EMG signals now control 
another function of the prosthesis, i.e., changing 
from grasping to wrist rotation. For above-elbow 
prostheses, even alternating between three func-
tions (grasping, wrist rotation, and elbow flexion) 
is common. However, as only one function can be 
controlled at a time, cycling through DOFs is a 

rather cumbersome control method and thus lim-
its the benefit of additional functions.

Another commercially popular approach dis-
tinguishes between grasping and rotation based 
on the slope with which the EMG signal increases. 
Slowly increasing EMG activity causes the open-
ing or closing of the prosthetic hand, while a 
quickly increasing activity causes rotation of the 
wrist. Once a high or a low slope is detected, the 
prosthesis stays within the corresponding DOF 
until the user relaxes the muscles completely and 
therefore allows for a proportional control of the 
speed or the force by adapting the contraction 
force. Here, no explicit mode switching is 
required, but the DOFs still have to be activated 
sequentially.

�Single-Channel Approaches
In cases when only one EMG channel can reli-
ably be controlled, both directions of a single 
DOF have to be addressed using a single channel. 
The direction is selected either by the initial slope 
of the signal or by its absolute level (e.g., high 
level for opening, low level for closing). Once the 
controller detects the direction, it locks into that 
state until a rest phase is detected and thus allows 
for a proportional control via modulation of the 
EMG activity. Alternatively, in those cases where 
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Fig. 13.1  Conventional two-channel proportional myoelectric control with antagonistic muscles. Only one DOF is 
controlled at a time and the active function is altered by performing a co-contraction. (© Ivan Vujaklija)
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even the proportional modulation of the EMG 
amplitude is not an option (commonly in kids), a 
hand can be open using a single channel, and the 
closing is automatically done by the prosthesis 
when the user relaxes. This approach is com-
monly referred to as “cookie crusher” [27].

�Non-EMG Approaches

In a clinical setting, control inputs other than 
EMG are also used as an alternatively or in addi-
tion to it. In prostheses with individually actuated 
fingers, which are usually controlled with the two-
channel approach, grip patterns can be preconfig-
ured and selected by pressing a button on the 
prosthesis with the other hand, or by moving the 
prosthesis into a certain direction after an EMG-
trigger-signal. Also RFID tags placed on certain 
objects can be used to automatically select grip 
patterns, when the hand approaches the tag [52].

�Control Approaches Following TMR

In TMR, additional EMG sites are obtained by 
surgically reconnecting the still intact nerves of 
the lost limb to other muscles in the vicinity [26]. 
In this way, intuitively controlled muscles that 
react to phantom limb motions of the lost limb 
are obtained and used for prosthesis control. 
Since the muscles are spatially well separated 
and can be actuated independently by the user, 
the two-channel direct control approach can be 

extended to multiple DOFs (Fig. 13.2). In a typi-
cal TMR prosthesis following a shoulder disar-
ticulation, up to six EMG signals can be detected 
and grouped in three pairs of commands. Thus, 
independent, proportional, and simultaneous 
control of three DOFs (elbow flexion/extension, 
wrist rotation, and hand opening/closing) is pos-
sible [32].

In those TMR cases where fewer control sig-
nals are available, a combination of other conven-
tional techniques can be adopted. For instance, 
when only five independent EMG channels are 
present, a pair of electrodes could be mapped to 
hand open/close and another one to elbow flexion 
and extension. The signal of the remaining elec-
trode could then be split so that the initial slope 
maps either pronation or supination and vice 
versa. With four available channels, two elec-
trodes can be used for elbow flexion/extension 
exclusively and the other two channels to either 
control grasping or wrist rotation, which can be 
switched through co-contraction.

�Machine Learning-Based Approaches

To overcome the limitations of the classical con-
trol approaches, significant research has been 
conducted in the past decades with the goal to 
employ machine learning techniques for extract-
ing more control information from a larger num-
ber of EMG signals. Most of these advanced 
approaches follow an established control chain 
containing the processing blocks shown in 
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Fig. 13.2  A schematic 
of a shoulder 
disarticulation TMR 
fitting (ventral side).  
(© Ivan Vujaklija)
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Fig. 13.3. Instead of just two, typically six to ten 
EMG channels are used, either specifically placed 
on certain muscles or equally distributed over the 
area of interest. In order to extract as much infor-
mation from the signals, the raw EMG is typi-
cally used. The signals are digitized and processed 
in blocks (windows) of 100–200 ms in duration 
as to satisfy the optimal controller delay [10]. 
After applying similar noise removal filters as in 
the conventional control, certain features are 
extracted from the filtered EMG to condense and 
describe the information that can be used by the 
control algorithm. A large number of different 
features and their combinations (feature sets) can 
be extracted in time and/or frequency domain. 
The most common ones include root mean square 
(RMS), mean absolute value (MAV), slope sign 
changes (SSC), zero crossings (ZC), wavelength 
(WL), auto recursive coefficients, short-time 
Fourier transform features, wavelets, and more 
[19]. After feature selection, a machine learning 
algorithm, commonly a classifier or a regressor, 
interprets the signal features and transforms them 
into control signals to be used by the prosthesis. 
Most approaches employ supervised algorithms, 
i.e., they have to be trained with samples of 
labeled training data prior to their application. To 
obtain these training samples, data is recorded for 
which the type of contraction is known, i.e., by 
relying on visual cues [1] or by performing bilat-
eral symmetric motions and measuring kinematic 
or forces of the contralateral, unaffected side 
[35]. In both cases (visual cues and bilateral 
motions), a certain error in the labels may be 
introduced due to variability in task execution.

�Classification

In classification-based approaches, an algorithm 
is trained with a pre-recorded feature samples of 
all motions the controller should be able to detect. 
It then compares the current feature vector with 
the model generated from the training data and 
decides for a certain motion (class). To achieve a 
high classification accuracy, several types of clas-
sifiers for myoelectric prosthetic control have 
been examined, such as linear discriminant anal-
ysis (LDA) [8], artificial neural networks (ANN) 
[24], support vector machines (SVMs) [49], 
k-nearest neighbors [24], and many more.

A classifier only estimates which motion is 
active, but it does not provide any information 
on the strength of the activation. It can therefore 
be combined with a parallel signal path to esti-
mate the activation level (e.g., from the mean 
amplitude of all channels) and enable the clini-
cally required proportional control of the veloc-
ity [4]. Compared to the co-contraction control, 
the mode switching is omitted, but different 
DOFs still have to be executed one by one, 
which requires complex motions to be separated 
into sequentially executed sub-motions. In the 
last years, however, EMG pattern recognition 
has been extended to concurrent classification 
of motion intent by introducing additional 
classes for all motion combinations that should 
be activated simultaneously [36]. In this way, 
the pattern recognition approach enables simul-
taneous control and thus promotes a more natu-
ral interaction with the environment. However, 
with increasing number of classes, the classifi-

Raw EMG

Temporal
Filtering

Feature
Extraction Estimation

Feature
Vectors

Training Labels
Control
Signals

Fig. 13.3  Block diagram describing the signal processing chain in most machine learning approaches for prosthesis 
control. (© Ivan Vujaklija)
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cation accuracy decreases, which increases the 
risk of false motions.

Although classification-based control 
approaches for myoelectric control have been 
proposed already several decades ago [13], their 
clinical impact has been so far limited. Most 
commercial prostheses still use the established 
two-channel control approaches. As of recent 
Coapt LLC [5] offers an FDA approved control-
ler with a classification-based control as an exten-
sion to most common hand and wrist devices. In 
2018, Otto Bock has introduced their own 
classification-based controller to the market [46]. 
The reasons for a limited transfer into clinical 
applications are related to reliability problems 
under real-world conditions. Factors such as a 
change in arm position [11], electrode shifts [54], 
and time between training and application [51] or 
changing skin conditions, e.g., due to sweat [21], 
alter the signal patterns and cause significantly 
decreasing classification accuracies.

�Regression

To overcome some of the limitations that 
classification-based approaches present, 
regression-based techniques have been investi-
gated to achieve an independent simultaneous 
and proportional control of multiple DOFs [22]. 
Similar to classification, regression is also a 
machine learning technique and needs to be 
trained with some calibration data. The essential 
difference to classification is that a regressor does 
not estimate a specific class (movement) but 
instead a continuous physical value (force, speed, 
position, etc.) for each DOF individually. In this 
way the activation ratio can be controlled inde-
pendently in all DOF, which allows, e.g., to open 
the hand quickly while performing a slow rota-
tion at the same time. Various nonlinear and lin-
ear techniques have been investigated for 
regression-based myoelectric control. Nielsen 
et  al. demonstrated successful control of two 
DOF with artificial neuronal networks [35] 
trained on bilateral mirrored motions, and Muceli 
et al. extended this approach to three DOF [33]. 
Ameri et  al. employed nonlinear kernel-based 

support vector regression [2] and investigated 
different strategies for obtaining the labels for 
supervised training, including visual cues [1]. 
Gijsberts et al. demonstrated an effective approx-
imation of the kernel approach by Random 
Fourier Features [12]. Matrix factorization tech-
niques have been able to successfully estimate 
anywhere from two DoF [23] up to seven DoF 
[20] control. Finally, regression control estab-
lished using autoencoders has shown to outper-
form classic control when driving multiple wrist 
DOFs [53].

An extensive comparison of linear and nonlin-
ear regression techniques has been made [14] 
showing that simplest of the approaches still 
seem to be sufficiently effective in delivering sat-
isfactory user performance. This well may be the 
consequence of continuous feedback that 
regression-based approaches offer. Unlike clas-
sification where due to discrete nature of the esti-
mation the users are not fully aware in which  
way the misestimation occurred, regression 
approaches, with their unbounded solution space, 
allow implicit adaptation to the user. This way, 
they can actively compensate for false estima-
tions of the algorithm despite the commonly 
occurring disturbances [15, 48]. As recently 
shown in five prosthesis users, this leads to rela-
tive high robustness against potential sources of 
non-stationarities such as changing arm position 
or donning and doffing the prosthesis [16]. 
However, the additional capabilities of simulta-
neous and proportional control are followed by 
the risk of unintended co-activations in other 
DOFs. Thresholds to suppress small activations 
can be introduced, but this problem increases 
with increasing number of DOFs.

�Modeling

It has been shown that simultaneous and propor-
tional control can also be achieved through mus-
culoskeletal modeling that estimates joint 
moments and joint torques from the muscle acti-
vations [7, 43, 44]. This approach has been suc-
cessfully demonstrated in both upper and lower 
limb prostheses [6, 45]. Instead of focusing on 
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the explicit properties of the data or the correla-
tions, forward musculoskeletal models recreate 
the biological process of motion generation. They 
incorporate the physiological and biomechanical 
constraints in order to estimate natural limb 
motions.

In particular, since TMR allows the detection 
of the neural activity of all nerves involved into 
the task, including missing muscles, musculo-
skeletal models allow rather detailed reconstruc-
tion of the internal biomechanical representation 
of missing limbs [9].

�Transfer Learning

Various sources of disturbance, such as posture 
change and resulting electrode shifts can impede 
the user in everyday prosthesis control [17, 54]. 
Several approaches have been proposed to 
improve robustness, such as implanted EMG 
electrodes instead of surface electrodes [14, 38], 
high-density EMG surface electrode grids [33, 
51] more sophisticated feature extraction [25], 
and post hoc error detection within the algorithm 
[3]. However, for the most commonly used sur-
face EMG control, a quick and easy approach to 
counteract electrode shift is the concept of trans-
fer learning, an approach which adapts the 
machine learning model to the disturbed data 
such that the original model is applicable again 
[37, 39, 40]. Thereby, a pattern recognition model 

is trained on recorded data (original) (see 
Fig. 13.4). The colored circles indicate a different 
class each. Then, incoming data is disturbed 
through electrode shift, and the learnt model is 
not applicably anymore (disturbed). The distur-
bance is estimated by recording only few new 
instances from only few selected classes in the 
disturbed condition (record new data). Grey cir-
cles indicate possible future positions of trans-
formed data. Finally, the algorithms learns an 
updated model based on the newly acquired data 
to virtually transform the data to its original 
domain so that the model can be employed again 
(transfer learning) [40].
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